Documentation

Mathlib.Data.Seq.Parallel

Parallel computation #

Parallel computation of a computable sequence of computations by a diagonal enumeration. The important theorems of this operation are proven as terminates_parallel and exists_of_mem_parallel. (This operation is nondeterministic in the sense that it does not honor sequence equivalence (irrelevance of computation time).)

Parallel computation of an infinite stream of computations, taking the first result

Equations
theorem Computation.exists_of_mem_parallel {α : Type u} {S : Stream'.WSeq (Computation α)} {a : α} (h : a parallel S) :
(c : Computation α), c S a c
theorem Computation.map_parallel {α : Type u} {β : Type v} (f : αβ) (S : Stream'.WSeq (Computation α)) :
def Computation.parallelRec {α : Type u} {S : Stream'.WSeq (Computation α)} (C : αSort v) (H : (s : Computation α) → s S(a : α) → a sC a) {a : α} (h : a parallel S) :
C a

Induction principle for parallel computations. The reason this isn't trivial from exists_of_mem_parallel is because it eliminates to Sort.

Equations
  • One or more equations did not get rendered due to their size.
theorem Computation.parallel_promises {α : Type u} {S : Stream'.WSeq (Computation α)} {a : α} (H : ∀ (s : Computation α), s Ss.Promises a) :
theorem Computation.mem_parallel {α : Type u} {S : Stream'.WSeq (Computation α)} {a : α} (H : ∀ (s : Computation α), s Ss.Promises a) {c : Computation α} (cs : c S) (ac : a c) :
theorem Computation.parallel_congr_lem {α : Type u} {S T : Stream'.WSeq (Computation α)} {a : α} (H : Stream'.WSeq.LiftRel Equiv S T) :
(∀ (s : Computation α), s Ss.Promises a) ∀ (t : Computation α), t Tt.Promises a
theorem Computation.parallel_congr_left {α : Type u} {S T : Stream'.WSeq (Computation α)} {a : α} (h1 : ∀ (s : Computation α), s Ss.Promises a) (H : Stream'.WSeq.LiftRel Equiv S T) :
theorem Computation.parallel_congr_right {α : Type u} {S T : Stream'.WSeq (Computation α)} {a : α} (h2 : ∀ (t : Computation α), t Tt.Promises a) (H : Stream'.WSeq.LiftRel Equiv S T) :