Documentation

Mathlib.Data.Fin.Fin2

Inductive type variant of Fin #

Fin is defined as a subtype of . This file defines an equivalent type, Fin2, which is defined inductively. This is useful for its induction principle and different definitional equalities.

Main declarations #

inductive Fin2 :
Type

An alternate definition of Fin n defined as an inductive type instead of a subtype of .

def Fin2.cases' {n : } {C : Fin2 n.succSort u} (H1 : C fz) (H2 : (n_1 : Fin2 n) → C n_1.fs) (i : Fin2 n.succ) :
C i

Define a dependent function on Fin2 (succ n) by giving its value at zero (H1) and by giving a dependent function on the rest (H2).

Equations
def Fin2.elim0 {C : Fin2 0Sort u} (i : Fin2 0) :
C i

Ex falso. The dependent eliminator for the empty Fin2 0 type.

Equations
    def Fin2.toNat {n : } :
    Fin2 n

    Converts a Fin2 into a natural.

    Equations
    def Fin2.optOfNat {n : } :
    Option (Fin2 n)

    Converts a natural into a Fin2 if it is in range

    Equations
    def Fin2.add {n : } (i : Fin2 n) (k : ) :
    Fin2 (n + k)

    i + k : Fin2 (n + k) when i : Fin2 n and k : ℕ

    Equations
    def Fin2.left (k : ) {n : } :
    Fin2 nFin2 (k + n)

    left k is the embedding Fin2 n → Fin2 (k + n)

    Equations
    def Fin2.insertPerm {n : } :
    Fin2 nFin2 nFin2 n

    insertPerm a is a permutation of Fin2 n with the following properties:

    Equations
    def Fin2.remapLeft {m n : } (f : Fin2 mFin2 n) (k : ) :
    Fin2 (m + k)Fin2 (n + k)

    remapLeft f k : Fin2 (m + k) → Fin2 (n + k) applies the function f : Fin2 m → Fin2 n to inputs less than m, and leaves the right part on the right (that is, remapLeft f k (m + i) = n + i).

    Equations
    class Fin2.IsLT (m n : ) :

    This is a simple type class inference prover for proof obligations of the form m < n where m n : ℕ.

    • h : m < n

      The unique field of Fin2.IsLT, a proof that m < n.

    Instances
      instance Fin2.IsLT.zero (n : ) :
      instance Fin2.IsLT.succ (m n : ) [l : IsLT m n] :
      def Fin2.ofNat' {n : } (m : ) [IsLT m n] :

      Use type class inference to infer the boundedness proof, so that we can directly convert a Nat into a Fin2 n. This supports notation like &1 : Fin 3.

      Equations
      def Fin2.castSucc {n : } :
      Fin2 nFin2 (n + 1)

      castSucc i embeds i : Fin2 n in Fin2 (n+1).

      Equations
      def Fin2.last {n : } :
      Fin2 (n + 1)

      The greatest value of Fin2 (n+1).

      Equations
      def Fin2.rev {n : } :
      Fin2 nFin2 n

      Maps 0 to n-1, 1 to n-2, ..., n-1 to 0.

      Equations
      @[simp]
      theorem Fin2.rev_last {n : } :
      @[simp]
      theorem Fin2.rev_castSucc {n : } (i : Fin2 n) :
      @[simp]
      theorem Fin2.rev_rev {n : } (i : Fin2 n) :
      i.rev.rev = i
      instance Fin2.instFintype (n : ) :
      Equations