Documentation

Mathlib.Combinatorics.SimpleGraph.Finsubgraph

Homomorphisms from finite subgraphs #

This file defines the type of finite subgraphs of a SimpleGraph and proves a compactness result for homomorphisms to a finite codomain.

Main statements #

Notations #

→fg is a module-local variant on →g where the domain is a finite subgraph of some supergraph G.

Implementation notes #

The proof here uses compactness as formulated in nonempty_sections_of_finite_inverse_system. For finite subgraphs G'' ≤ G', the inverse system finsubgraphHomFunctor restricts homomorphisms G' →fg F to domain G''.

@[reducible, inline]
abbrev SimpleGraph.Finsubgraph {V : Type u} (G : SimpleGraph V) :

The subtype of G.subgraph comprising those subgraphs with finite vertex sets.

Equations
@[reducible, inline]
abbrev SimpleGraph.FinsubgraphHom {V : Type u} {W : Type v} {G : SimpleGraph V} (G' : G.Finsubgraph) (F : SimpleGraph W) :
Type (max u v)

A graph homomorphism from a finite subgraph of G to F.

Equations
Equations
Equations
Equations
@[simp]
@[simp]
theorem SimpleGraph.Finsubgraph.coe_sup {V : Type u} {G : SimpleGraph V} (G₁ G₂ : G.Finsubgraph) :
(G₁G₂) = G₁G₂
@[simp]
theorem SimpleGraph.Finsubgraph.coe_inf {V : Type u} {G : SimpleGraph V} (G₁ G₂ : G.Finsubgraph) :
(G₁G₂) = G₁G₂
@[simp]
theorem SimpleGraph.Finsubgraph.coe_sdiff {V : Type u} {G : SimpleGraph V} (G₁ G₂ : G.Finsubgraph) :
↑(G₁ \ G₂) = G₁ \ G₂
Equations
Equations
Equations
@[simp]
@[simp]
theorem SimpleGraph.Finsubgraph.coe_compl {V : Type u} {G : SimpleGraph V} [Finite V] (G' : G.Finsubgraph) :
G' = (↑G')
@[simp]
theorem SimpleGraph.Finsubgraph.coe_hnot {V : Type u} {G : SimpleGraph V} [Finite V] (G' : G.Finsubgraph) :
↑(G') = G'
@[simp]
theorem SimpleGraph.Finsubgraph.coe_himp {V : Type u} {G : SimpleGraph V} [Finite V] (G₁ G₂ : G.Finsubgraph) :
↑(G₁ G₂) = G₁ G₂
@[simp]
theorem SimpleGraph.Finsubgraph.coe_sSup {V : Type u} {G : SimpleGraph V} [Finite V] (s : Set G.Finsubgraph) :
(sSup s) = G_1s, G_1
@[simp]
theorem SimpleGraph.Finsubgraph.coe_sInf {V : Type u} {G : SimpleGraph V} [Finite V] (s : Set G.Finsubgraph) :
(sInf s) = G_1s, G_1
@[simp]
theorem SimpleGraph.Finsubgraph.coe_iSup {V : Type u} {G : SimpleGraph V} [Finite V] {ι : Sort u_1} (f : ιG.Finsubgraph) :
(⨆ (i : ι), f i) = ⨆ (i : ι), (f i)
@[simp]
theorem SimpleGraph.Finsubgraph.coe_iInf {V : Type u} {G : SimpleGraph V} [Finite V] {ι : Sort u_1} (f : ιG.Finsubgraph) :
(⨅ (i : ι), f i) = ⨅ (i : ι), (f i)

The finite subgraph of G generated by a single vertex.

Equations
def SimpleGraph.finsubgraphOfAdj {V : Type u} {G : SimpleGraph V} {u v : V} (e : G.Adj u v) :

The finite subgraph of G generated by a single edge.

Equations
def SimpleGraph.FinsubgraphHom.restrict {V : Type u} {W : Type v} {G : SimpleGraph V} {F : SimpleGraph W} {G' G'' : G.Finsubgraph} (h : G'' G') (f : FinsubgraphHom G' F) :

Given a homomorphism from a subgraph to F, construct its restriction to a sub-subgraph.

Equations

The inverse system of finite homomorphisms.

Equations
  • One or more equations did not get rendered due to their size.
theorem SimpleGraph.nonempty_hom_of_forall_finite_subgraph_hom {V : Type u} {W : Type v} {G : SimpleGraph V} {F : SimpleGraph W} [Finite W] (h : (G' : G.Subgraph) → G'.verts.FiniteG'.coe →g F) :

If every finite subgraph of a graph G has a homomorphism to a finite graph F, then there is a homomorphism from the whole of G to F.