Documentation

Mathlib.Combinatorics.SimpleGraph.ConcreteColorings

Concrete colorings of common graphs #

This file defines colorings for some common graphs

Main declarations #

theorem SimpleGraph.two_le_chromaticNumber_of_adj {α : Type u_1} {G : SimpleGraph α} {u v : α} (hadj : G.Adj u v) :

Bicoloring of a path graph

Equations

Embedding of pathGraph 2 into the first two elements of pathGraph n for 2 ≤ n

Equations
theorem SimpleGraph.Coloring.even_length_iff_congr {α : Type u_1} {G : SimpleGraph α} (c : G.Coloring Bool) {u v : α} (p : G.Walk u v) :
Even p.length (c u = true c v = true)
theorem SimpleGraph.Coloring.odd_length_iff_not_congr {α : Type u_1} {G : SimpleGraph α} (c : G.Coloring Bool) {u v : α} (p : G.Walk u v) :
Odd p.length (¬c u = true c v = true)
theorem SimpleGraph.Walk.three_le_chromaticNumber_of_odd_loop {α : Type u_1} {G : SimpleGraph α} {u : α} (p : G.Walk u u) (hOdd : Odd p.length) :

Bicoloring of a cycle graph of even size

Equations

Tricoloring of a cycle graph

Equations