The empty category #
Defines a category structure on PEmpty, and the unique functor PEmpty ⥤ C for any category C.
def
CategoryTheory.functorOfIsEmpty
(C : Type u)
[Category.{v, u} C]
(D : Type u')
[Category.{v', u'} D]
[IsEmpty C]
 :
Functor C D
The (unique) functor from an empty category.
Equations
- CategoryTheory.functorOfIsEmpty C D = { obj := fun (a : C) => isEmptyElim a, map := fun {X Y : C} => isEmptyElim X, map_id := ⋯, map_comp := ⋯ }
 
def
CategoryTheory.Functor.isEmptyExt
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
[IsEmpty C]
(F G : Functor C D)
 :
Any two functors out of an empty category are isomorphic.
Equations
- F.isEmptyExt G = CategoryTheory.NatIso.ofComponents (fun (a : C) => isEmptyElim a) ⋯
 
def
CategoryTheory.equivalenceOfIsEmpty
(C : Type u)
[Category.{v, u} C]
(D : Type u')
[Category.{v', u'} D]
[IsEmpty C]
[IsEmpty D]
 :
The equivalence between two empty categories.
Equations
- One or more equations did not get rendered due to their size.
 
Equivalence between two empty categories.
The canonical functor out of the empty category.
def
CategoryTheory.Functor.emptyExt
{C : Type u}
[Category.{v, u} C]
(F G : Functor (Discrete PEmpty.{w + 1}) C)
 :
Any two functors out of the empty category are isomorphic.
Equations
- F.emptyExt G = CategoryTheory.Discrete.natIso fun (x : CategoryTheory.Discrete PEmpty.{?u.30 + 1}) => x.as.elim
 
def
CategoryTheory.Functor.uniqueFromEmpty
{C : Type u}
[Category.{v, u} C]
(F : Functor (Discrete PEmpty.{w + 1}) C)
 :
Any functor out of the empty category is isomorphic to the canonical functor from the empty category.
Equations
theorem
CategoryTheory.Functor.empty_ext'
{C : Type u}
[Category.{v, u} C]
(F G : Functor (Discrete PEmpty.{w + 1}) C)
 :
Any two functors out of the empty category are equal. You probably want to use
emptyExt instead of this.