Documentation

Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Formula

Negation and addition formulae for nonsingular points in projective coordinates #

Let W be a Weierstrass curve over a field F. The nonsingular projective points on W can be given negation and addition operations defined by an analogue of the secant-and-tangent process in Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Formula.lean, but the polynomials involved are homogeneous, so any instances of division become multiplication in the Z-coordinate. Most computational proofs are immediate from their analogous proofs for affine coordinates.

This file defines polynomials associated to negation, doubling, and addition of projective point representatives. The group operations and the group law on actual nonsingular projective points will be defined in Mathlib/AlgebraicGeometry/EllipticCurve/Projective/Point.lean.

Main definitions #

Implementation notes #

The definitions of WeierstrassCurve.Projective.dblX, WeierstrassCurve.Projective.negDblY, WeierstrassCurve.Projective.addZ, WeierstrassCurve.Projective.addX, and WeierstrassCurve.Projective.negAddY are given explicitly by large polynomials that are homogeneous of degree 4. Clearing the denominators of their corresponding affine rational functions in Mathlib/AlgebraicGeometry/EllipticCurve/Affine/Formula.lean would give polynomials that are homogeneous of degrees 5, 6, 6, 8, and 8 respectively, so their actual definitions are off by powers of certain polynomial factors that are homogeneous of degree 1 or 2. These factors divide their corresponding affine polynomials only modulo the homogeneous Weierstrass equation, so their large quotient polynomials are calculated explicitly in a computer algebra system. All of this is done to ensure that the definitions of both WeierstrassCurve.Projective.dblXYZ and WeierstrassCurve.Projective.addXYZ are homogeneous of degree 4.

Whenever possible, all changes to documentation and naming of definitions and theorems should be mirrored in Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian/Formula.lean.

References #

[J Silverman, The Arithmetic of Elliptic Curves][silverman2009]

Tags #

elliptic curve, projective, negation, doubling, addition, group law

Negation formulae in projective coordinates #

def WeierstrassCurve.Projective.negY {R : Type r} [CommRing R] (W' : Projective R) (P : Fin 3R) :
R

The Y-coordinate of a representative of -P for a projective point representative P on a Weierstrass curve.

Equations
theorem WeierstrassCurve.Projective.negY_eq {R : Type r} [CommRing R] {W' : Projective R} (X Y Z : R) :
W'.negY ![X, Y, Z] = -Y - W'.a₁ * X - W'.a₃ * Z
theorem WeierstrassCurve.Projective.negY_smul {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) (u : R) :
W'.negY (u P) = u * W'.negY P
theorem WeierstrassCurve.Projective.negY_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.negY P = -P 1
theorem WeierstrassCurve.Projective.negY_of_Z_ne_zero {F : Type u} [Field F] {W : Projective F} {P : Fin 3F} (hPz : P 2 0) :
W.negY P / P 2 = W.toAffine.negY (P 0 / P 2) (P 1 / P 2)
theorem WeierstrassCurve.Projective.Y_sub_Y_mul_Y_sub_negY {R : Type r} [CommRing R] {W' : Projective R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 = Q 0 * P 2) :
P 2 * Q 2 * (P 1 * Q 2 - Q 1 * P 2) * (P 1 * Q 2 - W'.negY Q * P 2) = 0
theorem WeierstrassCurve.Projective.Y_eq_of_Y_ne {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 Q 1 * P 2) :
P 1 * Q 2 = W'.negY Q * P 2
theorem WeierstrassCurve.Projective.Y_eq_of_Y_ne' {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 W'.negY Q * P 2) :
P 1 * Q 2 = Q 1 * P 2
theorem WeierstrassCurve.Projective.Y_eq_iff' {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) :
P 1 * Q 2 = W.negY Q * P 2 P 1 / P 2 = W.toAffine.negY (Q 0 / Q 2) (Q 1 / Q 2)
theorem WeierstrassCurve.Projective.Y_sub_Y_add_Y_sub_negY {R : Type r} [CommRing R] {W' : Projective R} {P Q : Fin 3R} (hx : P 0 * Q 2 = Q 0 * P 2) :
P 1 * Q 2 - Q 1 * P 2 + (P 1 * Q 2 - W'.negY Q * P 2) = (P 1 - W'.negY P) * Q 2
theorem WeierstrassCurve.Projective.Y_ne_negY_of_Y_ne {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 Q 1 * P 2) :
P 1 W'.negY P
theorem WeierstrassCurve.Projective.Y_ne_negY_of_Y_ne' {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 W'.negY Q * P 2) :
P 1 W'.negY P
theorem WeierstrassCurve.Projective.Y_eq_negY_of_Y_eq {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W'.negY Q * P 2) :
P 1 = W'.negY P
theorem WeierstrassCurve.Projective.nonsingular_iff_of_Y_eq_negY {F : Type u} [Field F] {W : Projective F} {P : Fin 3F} (hPz : P 2 0) (hy : P 1 = W.negY P) :

Doubling formulae in projective coordinates #

noncomputable def WeierstrassCurve.Projective.dblU {F : Type u} [Field F] (W : Projective F) (P : Fin 3F) :
F

The unit associated to a representative of 2 • P for a projective point representative P on a Weierstrass curve W that is 2-torsion.

More specifically, the unit u such that W.add P P = u • ![0, 1, 0] where P = W.neg P.

Equations
theorem WeierstrassCurve.Projective.dblU_eq {F : Type u} [Field F] {W : Projective F} (P : Fin 3F) :
W.dblU P = (W.a₁ * P 1 * P 2 - (3 * P 0 ^ 2 + 2 * W.a₂ * P 0 * P 2 + W.a₄ * P 2 ^ 2)) ^ 3 / P 2 ^ 2
theorem WeierstrassCurve.Projective.dblU_smul {F : Type u} [Field F] {W : Projective F} {P : Fin 3F} (hPz : P 2 0) {u : F} (hu : u 0) :
W.dblU (u P) = u ^ 4 * W.dblU P
theorem WeierstrassCurve.Projective.dblU_of_Z_eq_zero {F : Type u} [Field F] {W : Projective F} {P : Fin 3F} (hPz : P 2 = 0) :
W.dblU P = 0
theorem WeierstrassCurve.Projective.dblU_ne_zero_of_Y_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W.negY Q * P 2) :
W.dblU P 0
theorem WeierstrassCurve.Projective.isUnit_dblU_of_Y_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W.negY Q * P 2) :
IsUnit (W.dblU P)
def WeierstrassCurve.Projective.dblZ {R : Type r} [CommRing R] (W' : Projective R) (P : Fin 3R) :
R

The Z-coordinate of a representative of 2 • P for a projective point representative P on a Weierstrass curve.

Equations
theorem WeierstrassCurve.Projective.dblZ_smul {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) (u : R) :
W'.dblZ (u P) = u ^ 4 * W'.dblZ P
theorem WeierstrassCurve.Projective.dblZ_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Projective R} {P : Fin 3R} (hPz : P 2 = 0) :
W'.dblZ P = 0
theorem WeierstrassCurve.Projective.dblZ_of_Y_eq {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W'.negY Q * P 2) :
W'.dblZ P = 0
theorem WeierstrassCurve.Projective.dblZ_ne_zero_of_Y_ne {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 Q 1 * P 2) :
W'.dblZ P 0
theorem WeierstrassCurve.Projective.isUnit_dblZ_of_Y_ne {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 Q 1 * P 2) :
IsUnit (W.dblZ P)
theorem WeierstrassCurve.Projective.dblZ_ne_zero_of_Y_ne' {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 W'.negY Q * P 2) :
W'.dblZ P 0
theorem WeierstrassCurve.Projective.isUnit_dblZ_of_Y_ne' {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 W.negY Q * P 2) :
IsUnit (W.dblZ P)
noncomputable def WeierstrassCurve.Projective.dblX {R : Type r} [CommRing R] (W' : Projective R) (P : Fin 3R) :
R

The X-coordinate of a representative of 2 • P for a projective point representative P on a Weierstrass curve.

Equations
  • One or more equations did not get rendered due to their size.
theorem WeierstrassCurve.Projective.dblX_eq' {R : Type r} [CommRing R] {W' : Projective R} {P : Fin 3R} (hP : W'.Equation P) :
W'.dblX P * P 2 = ((MvPolynomial.eval P) W'.polynomialX ^ 2 - W'.a₁ * (MvPolynomial.eval P) W'.polynomialX * P 2 * (P 1 - W'.negY P) - W'.a₂ * P 2 ^ 2 * (P 1 - W'.negY P) ^ 2 - 2 * P 0 * P 2 * (P 1 - W'.negY P) ^ 2) * (P 1 - W'.negY P)
theorem WeierstrassCurve.Projective.dblX_eq {F : Type u} [Field F] {W : Projective F} {P : Fin 3F} (hP : W.Equation P) (hPz : P 2 0) :
W.dblX P = ((MvPolynomial.eval P) W.polynomialX ^ 2 - W.a₁ * (MvPolynomial.eval P) W.polynomialX * P 2 * (P 1 - W.negY P) - W.a₂ * P 2 ^ 2 * (P 1 - W.negY P) ^ 2 - 2 * P 0 * P 2 * (P 1 - W.negY P) ^ 2) * (P 1 - W.negY P) / P 2
theorem WeierstrassCurve.Projective.dblX_smul {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) (u : R) :
W'.dblX (u P) = u ^ 4 * W'.dblX P
theorem WeierstrassCurve.Projective.dblX_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.dblX P = 0
theorem WeierstrassCurve.Projective.dblX_of_Y_eq {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W'.negY Q * P 2) :
W'.dblX P = 0
theorem WeierstrassCurve.Projective.dblX_of_Z_ne_zero {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 W.negY Q * P 2) :
W.dblX P / W.dblZ P = W.toAffine.addX (P 0 / P 2) (Q 0 / Q 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2))
noncomputable def WeierstrassCurve.Projective.negDblY {R : Type r} [CommRing R] (W' : Projective R) (P : Fin 3R) :
R

The Y-coordinate of a representative of -(2 • P) for a projective point representative P on a Weierstrass curve.

Equations
  • One or more equations did not get rendered due to their size.
theorem WeierstrassCurve.Projective.negDblY_eq' {R : Type r} [CommRing R] {W' : Projective R} {P : Fin 3R} (hP : W'.Equation P) :
W'.negDblY P * P 2 ^ 2 = -(MvPolynomial.eval P) W'.polynomialX * ((MvPolynomial.eval P) W'.polynomialX ^ 2 - W'.a₁ * (MvPolynomial.eval P) W'.polynomialX * P 2 * (P 1 - W'.negY P) - W'.a₂ * P 2 ^ 2 * (P 1 - W'.negY P) ^ 2 - 2 * P 0 * P 2 * (P 1 - W'.negY P) ^ 2 - P 0 * P 2 * (P 1 - W'.negY P) ^ 2) + P 1 * P 2 ^ 2 * (P 1 - W'.negY P) ^ 3
theorem WeierstrassCurve.Projective.negDblY_eq {F : Type u} [Field F] {W : Projective F} {P : Fin 3F} (hP : W.Equation P) (hPz : P 2 0) :
W.negDblY P = (-(MvPolynomial.eval P) W.polynomialX * ((MvPolynomial.eval P) W.polynomialX ^ 2 - W.a₁ * (MvPolynomial.eval P) W.polynomialX * P 2 * (P 1 - W.negY P) - W.a₂ * P 2 ^ 2 * (P 1 - W.negY P) ^ 2 - 2 * P 0 * P 2 * (P 1 - W.negY P) ^ 2 - P 0 * P 2 * (P 1 - W.negY P) ^ 2) + P 1 * P 2 ^ 2 * (P 1 - W.negY P) ^ 3) / P 2 ^ 2
theorem WeierstrassCurve.Projective.negDblY_smul {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) (u : R) :
W'.negDblY (u P) = u ^ 4 * W'.negDblY P
theorem WeierstrassCurve.Projective.negDblY_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.negDblY P = -P 1 ^ 4
theorem WeierstrassCurve.Projective.negDblY_of_Y_eq' {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W'.negY Q * P 2) :
theorem WeierstrassCurve.Projective.negDblY_of_Y_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W.negY Q * P 2) :
W.negDblY P = -W.dblU P
theorem WeierstrassCurve.Projective.negDblY_of_Z_ne_zero {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 W.negY Q * P 2) :
W.negDblY P / W.dblZ P = W.toAffine.negAddY (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2))
noncomputable def WeierstrassCurve.Projective.dblY {R : Type r} [CommRing R] (W' : Projective R) (P : Fin 3R) :
R

The Y-coordinate of a representative of 2 • P for a projective point representative P on a Weierstrass curve.

Equations
theorem WeierstrassCurve.Projective.dblY_smul {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) (u : R) :
W'.dblY (u P) = u ^ 4 * W'.dblY P
theorem WeierstrassCurve.Projective.dblY_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.dblY P = P 1 ^ 4
theorem WeierstrassCurve.Projective.dblY_of_Y_eq' {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W'.negY Q * P 2) :
W'.dblY P * P 2 ^ 2 = (MvPolynomial.eval P) W'.polynomialX ^ 3
theorem WeierstrassCurve.Projective.dblY_of_Y_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W.negY Q * P 2) :
W.dblY P = W.dblU P
theorem WeierstrassCurve.Projective.dblY_of_Z_ne_zero {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 W.negY Q * P 2) :
W.dblY P / W.dblZ P = W.toAffine.addY (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2))
noncomputable def WeierstrassCurve.Projective.dblXYZ {R : Type r} [CommRing R] (W' : Projective R) (P : Fin 3R) :
Fin 3R

The coordinates of a representative of 2 • P for a projective point representative P on a Weierstrass curve.

Equations
theorem WeierstrassCurve.Projective.dblXYZ_X {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) :
W'.dblXYZ P 0 = W'.dblX P
theorem WeierstrassCurve.Projective.dblXYZ_Y {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) :
W'.dblXYZ P 1 = W'.dblY P
theorem WeierstrassCurve.Projective.dblXYZ_Z {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) :
W'.dblXYZ P 2 = W'.dblZ P
theorem WeierstrassCurve.Projective.dblXYZ_smul {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) (u : R) :
W'.dblXYZ (u P) = u ^ 4 W'.dblXYZ P
theorem WeierstrassCurve.Projective.dblXYZ_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.dblXYZ P = P 1 ^ 4 ![0, 1, 0]
theorem WeierstrassCurve.Projective.dblXYZ_of_Y_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 = Q 1 * P 2) (hy' : P 1 * Q 2 = W.negY Q * P 2) :
W.dblXYZ P = W.dblU P ![0, 1, 0]
theorem WeierstrassCurve.Projective.dblXYZ_of_Z_ne_zero {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) (hy : P 1 * Q 2 W.negY Q * P 2) :
W.dblXYZ P = W.dblZ P ![W.toAffine.addX (P 0 / P 2) (Q 0 / Q 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2)), W.toAffine.addY (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2)), 1]

Addition formulae in projective coordinates #

def WeierstrassCurve.Projective.addU {F : Type u} [Field F] (P Q : Fin 3F) :
F

The unit associated to a representative of P + Q for two projective point representatives P and Q on a Weierstrass curve W that are not 2-torsion.

More specifically, the unit u such that W.add P Q = u • ![0, 1, 0] where P x / P z = Q x / Q z but P ≠ W.neg P.

Equations
theorem WeierstrassCurve.Projective.addU_smul {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) {u v : F} (hu : u 0) (hv : v 0) :
addU (u P) (v Q) = (u * v) ^ 2 * addU P Q
theorem WeierstrassCurve.Projective.addU_of_Z_eq_zero_left {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 = 0) :
addU P Q = 0
theorem WeierstrassCurve.Projective.addU_of_Z_eq_zero_right {F : Type u} [Field F] {P Q : Fin 3F} (hQz : Q 2 = 0) :
addU P Q = 0
theorem WeierstrassCurve.Projective.addU_ne_zero_of_Y_ne {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) (hy : P 1 * Q 2 Q 1 * P 2) :
addU P Q 0
theorem WeierstrassCurve.Projective.isUnit_addU_of_Y_ne {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) (hy : P 1 * Q 2 Q 1 * P 2) :
IsUnit (addU P Q)
def WeierstrassCurve.Projective.addZ {R : Type r} [CommRing R] (W' : Projective R) (P Q : Fin 3R) :
R

The Z-coordinate of a representative of P + Q for two distinct projective point representatives P and Q on a Weierstrass curve.

If the representatives of P and Q are equal, then this returns the value 0.

Equations
  • One or more equations did not get rendered due to their size.
theorem WeierstrassCurve.Projective.addZ_eq' {R : Type r} [CommRing R] {W' : Projective R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) :
W'.addZ P Q * (P 2 * Q 2) = (P 0 * Q 2 - Q 0 * P 2) ^ 3
theorem WeierstrassCurve.Projective.addZ_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) :
W.addZ P Q = (P 0 * Q 2 - Q 0 * P 2) ^ 3 / (P 2 * Q 2)
theorem WeierstrassCurve.Projective.addZ_smul {R : Type r} [CommRing R] {W' : Projective R} (P Q : Fin 3R) (u v : R) :
W'.addZ (u P) (v Q) = (u * v) ^ 2 * W'.addZ P Q
theorem WeierstrassCurve.Projective.addZ_self {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) :
W'.addZ P P = 0
theorem WeierstrassCurve.Projective.addZ_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.addZ P Q = P 1 ^ 2 * Q 2 * Q 2
theorem WeierstrassCurve.Projective.addZ_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
W'.addZ P Q = -(Q 1 ^ 2 * P 2) * P 2
theorem WeierstrassCurve.Projective.addZ_of_X_eq {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) :
W'.addZ P Q = 0
theorem WeierstrassCurve.Projective.addZ_ne_zero_of_X_ne {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 Q 0 * P 2) :
W'.addZ P Q 0
theorem WeierstrassCurve.Projective.isUnit_addZ_of_X_ne {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hx : P 0 * Q 2 Q 0 * P 2) :
IsUnit (W.addZ P Q)
def WeierstrassCurve.Projective.addX {R : Type r} [CommRing R] (W' : Projective R) (P Q : Fin 3R) :
R

The X-coordinate of a representative of P + Q for two distinct projective point representatives P and Q on a Weierstrass curve.

If the representatives of P and Q are equal, then this returns the value 0.

Equations
  • One or more equations did not get rendered due to their size.
theorem WeierstrassCurve.Projective.addX_eq' {R : Type r} [CommRing R] {W' : Projective R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) :
W'.addX P Q * (P 2 * Q 2) ^ 2 = ((P 1 * Q 2 - Q 1 * P 2) ^ 2 * P 2 * Q 2 + W'.a₁ * (P 1 * Q 2 - Q 1 * P 2) * P 2 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) - W'.a₂ * P 2 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - P 0 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - Q 0 * P 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2) * (P 0 * Q 2 - Q 0 * P 2)
theorem WeierstrassCurve.Projective.addX_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) :
W.addX P Q = ((P 1 * Q 2 - Q 1 * P 2) ^ 2 * P 2 * Q 2 + W.a₁ * (P 1 * Q 2 - Q 1 * P 2) * P 2 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) - W.a₂ * P 2 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - P 0 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - Q 0 * P 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2) * (P 0 * Q 2 - Q 0 * P 2) / (P 2 * Q 2) ^ 2
theorem WeierstrassCurve.Projective.addX_smul {R : Type r} [CommRing R] {W' : Projective R} (P Q : Fin 3R) (u v : R) :
W'.addX (u P) (v Q) = (u * v) ^ 2 * W'.addX P Q
theorem WeierstrassCurve.Projective.addX_self {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) :
W'.addX P P = 0
theorem WeierstrassCurve.Projective.addX_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.addX P Q = P 1 ^ 2 * Q 2 * Q 0
theorem WeierstrassCurve.Projective.addX_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
W'.addX P Q = -(Q 1 ^ 2 * P 2) * P 0
theorem WeierstrassCurve.Projective.addX_of_X_eq {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) :
W'.addX P Q = 0
theorem WeierstrassCurve.Projective.addX_of_Z_ne_zero {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 Q 0 * P 2) :
W.addX P Q / W.addZ P Q = W.toAffine.addX (P 0 / P 2) (Q 0 / Q 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2))
def WeierstrassCurve.Projective.negAddY {R : Type r} [CommRing R] (W' : Projective R) (P Q : Fin 3R) :
R

The Y-coordinate of a representative of -(P + Q) for two distinct projective point representatives P and Q on a Weierstrass curve.

If the representatives of P and Q are equal, then this returns the value 0.

Equations
  • One or more equations did not get rendered due to their size.
theorem WeierstrassCurve.Projective.negAddY_eq' {R : Type r} [CommRing R] {W' : Projective R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) :
W'.negAddY P Q * (P 2 * Q 2) ^ 2 = (P 1 * Q 2 - Q 1 * P 2) * ((P 1 * Q 2 - Q 1 * P 2) ^ 2 * P 2 * Q 2 + W'.a₁ * (P 1 * Q 2 - Q 1 * P 2) * P 2 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) - W'.a₂ * P 2 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - P 0 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - Q 0 * P 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - P 0 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2) + P 1 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 3
theorem WeierstrassCurve.Projective.negAddY_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) :
W.negAddY P Q = ((P 1 * Q 2 - Q 1 * P 2) * ((P 1 * Q 2 - Q 1 * P 2) ^ 2 * P 2 * Q 2 + W.a₁ * (P 1 * Q 2 - Q 1 * P 2) * P 2 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) - W.a₂ * P 2 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - P 0 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - Q 0 * P 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2 - P 0 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 2) + P 1 * Q 2 * (P 0 * Q 2 - Q 0 * P 2) ^ 3) / (P 2 * Q 2) ^ 2
theorem WeierstrassCurve.Projective.negAddY_smul {R : Type r} [CommRing R] {W' : Projective R} (P Q : Fin 3R) (u v : R) :
W'.negAddY (u P) (v Q) = (u * v) ^ 2 * W'.negAddY P Q
theorem WeierstrassCurve.Projective.negAddY_self {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) :
W'.negAddY P P = 0
theorem WeierstrassCurve.Projective.negAddY_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.negAddY P Q = P 1 ^ 2 * Q 2 * W'.negY Q
theorem WeierstrassCurve.Projective.negAddY_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
W'.negAddY P Q = -(Q 1 ^ 2 * P 2) * W'.negY P
theorem WeierstrassCurve.Projective.negAddY_of_X_eq' {R : Type r} [CommRing R] {W' : Projective R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 = Q 0 * P 2) :
W'.negAddY P Q * (P 2 * Q 2) ^ 2 = (P 1 * Q 2 - Q 1 * P 2) ^ 3 * (P 2 * Q 2)
theorem WeierstrassCurve.Projective.negAddY_of_X_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) :
W.negAddY P Q = -addU P Q
theorem WeierstrassCurve.Projective.negAddY_of_Z_ne_zero {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 Q 0 * P 2) :
W.negAddY P Q / W.addZ P Q = W.toAffine.negAddY (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2))
def WeierstrassCurve.Projective.addY {R : Type r} [CommRing R] (W' : Projective R) (P Q : Fin 3R) :
R

The Y-coordinate of a representative of P + Q for two distinct projective point representatives P and Q on a Weierstrass curve.

If the representatives of P and Q are equal, then this returns the value 0.

Equations
theorem WeierstrassCurve.Projective.addY_smul {R : Type r} [CommRing R] {W' : Projective R} (P Q : Fin 3R) (u v : R) :
W'.addY (u P) (v Q) = (u * v) ^ 2 * W'.addY P Q
theorem WeierstrassCurve.Projective.addY_self {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) :
W'.addY P P = 0
theorem WeierstrassCurve.Projective.addY_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.addY P Q = P 1 ^ 2 * Q 2 * Q 1
theorem WeierstrassCurve.Projective.addY_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
W'.addY P Q = -(Q 1 ^ 2 * P 2) * P 1
theorem WeierstrassCurve.Projective.addY_of_X_eq' {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) :
W'.addY P Q * (P 2 * Q 2) ^ 3 = -(P 1 * Q 2 - Q 1 * P 2) ^ 3 * (P 2 * Q 2) ^ 2
theorem WeierstrassCurve.Projective.addY_of_X_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) :
W.addY P Q = addU P Q
theorem WeierstrassCurve.Projective.addY_of_Z_ne_zero {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 Q 0 * P 2) :
W.addY P Q / W.addZ P Q = W.toAffine.addY (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2))
noncomputable def WeierstrassCurve.Projective.addXYZ {R : Type r} [CommRing R] (W' : Projective R) (P Q : Fin 3R) :
Fin 3R

The coordinates of a representative of P + Q for two distinct projective point representatives P and Q on a Weierstrass curve.

If the representatives of P and Q are equal, then this returns the value ![0, 0, 0].

Equations
theorem WeierstrassCurve.Projective.addXYZ_X {R : Type r} [CommRing R] {W' : Projective R} (P Q : Fin 3R) :
W'.addXYZ P Q 0 = W'.addX P Q
theorem WeierstrassCurve.Projective.addXYZ_Y {R : Type r} [CommRing R] {W' : Projective R} (P Q : Fin 3R) :
W'.addXYZ P Q 1 = W'.addY P Q
theorem WeierstrassCurve.Projective.addXYZ_Z {R : Type r} [CommRing R] {W' : Projective R} (P Q : Fin 3R) :
W'.addXYZ P Q 2 = W'.addZ P Q
theorem WeierstrassCurve.Projective.addXYZ_smul {R : Type r} [CommRing R] {W' : Projective R} (P Q : Fin 3R) (u v : R) :
W'.addXYZ (u P) (v Q) = (u * v) ^ 2 W'.addXYZ P Q
theorem WeierstrassCurve.Projective.addXYZ_self {R : Type r} [CommRing R] {W' : Projective R} (P : Fin 3R) :
W'.addXYZ P P = ![0, 0, 0]
theorem WeierstrassCurve.Projective.addXYZ_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
W'.addXYZ P Q = (P 1 ^ 2 * Q 2) Q
theorem WeierstrassCurve.Projective.addXYZ_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Projective R} [NoZeroDivisors R] {P Q : Fin 3R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
W'.addXYZ P Q = -(Q 1 ^ 2 * P 2) P
theorem WeierstrassCurve.Projective.addXYZ_of_X_eq {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 = Q 0 * P 2) :
W.addXYZ P Q = addU P Q ![0, 1, 0]
theorem WeierstrassCurve.Projective.addXYZ_of_Z_ne_zero {F : Type u} [Field F] {W : Projective F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 Q 0 * P 2) :
W.addXYZ P Q = W.addZ P Q ![W.toAffine.addX (P 0 / P 2) (Q 0 / Q 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2)), W.toAffine.addY (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (W.toAffine.slope (P 0 / P 2) (Q 0 / Q 2) (P 1 / P 2) (Q 1 / Q 2)), 1]

Maps and base changes #

@[simp]
theorem WeierstrassCurve.Projective.map_negY {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P : Fin 3R) :
(map W' f).toProjective.negY (f P) = f (W'.negY P)
@[simp]
theorem WeierstrassCurve.Projective.map_dblU {F : Type u} {K : Type v} [Field F] [Field K] {W : Projective F} (f : F →+* K) (P : Fin 3F) :
(map W f).toProjective.dblU (f P) = f (W.dblU P)
@[simp]
theorem WeierstrassCurve.Projective.map_dblZ {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P : Fin 3R) :
(map W' f).toProjective.dblZ (f P) = f (W'.dblZ P)
@[simp]
theorem WeierstrassCurve.Projective.map_dblX {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P : Fin 3R) :
(map W' f).toProjective.dblX (f P) = f (W'.dblX P)
@[simp]
theorem WeierstrassCurve.Projective.map_negDblY {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P : Fin 3R) :
(map W' f).toProjective.negDblY (f P) = f (W'.negDblY P)
@[simp]
theorem WeierstrassCurve.Projective.map_dblY {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P : Fin 3R) :
(map W' f).toProjective.dblY (f P) = f (W'.dblY P)
@[simp]
theorem WeierstrassCurve.Projective.map_dblXYZ {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P : Fin 3R) :
(map W' f).toProjective.dblXYZ (f P) = f W'.dblXYZ P
@[simp]
theorem WeierstrassCurve.Projective.map_addU {F : Type u} {K : Type v} [Field F] [Field K] (f : F →+* K) (P Q : Fin 3F) :
addU (f P) (f Q) = f (addU P Q)
@[simp]
theorem WeierstrassCurve.Projective.map_addZ {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P Q : Fin 3R) :
(map W' f).toProjective.addZ (f P) (f Q) = f (W'.addZ P Q)
@[simp]
theorem WeierstrassCurve.Projective.map_addX {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P Q : Fin 3R) :
(map W' f).toProjective.addX (f P) (f Q) = f (W'.addX P Q)
@[simp]
theorem WeierstrassCurve.Projective.map_negAddY {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P Q : Fin 3R) :
(map W' f).toProjective.negAddY (f P) (f Q) = f (W'.negAddY P Q)
@[simp]
theorem WeierstrassCurve.Projective.map_addY {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P Q : Fin 3R) :
(map W' f).toProjective.addY (f P) (f Q) = f (W'.addY P Q)
@[simp]
theorem WeierstrassCurve.Projective.map_addXYZ {R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : Projective R} (f : R →+* S) (P Q : Fin 3R) :
(map W' f).toProjective.addXYZ (f P) (f Q) = f W'.addXYZ P Q
theorem WeierstrassCurve.Projective.baseChange_negY {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
theorem WeierstrassCurve.Projective.baseChange_dblU {R : Type r} {S : Type s} {F : Type u} {K : Type v} [CommRing R] [CommRing S] [Field F] [Field K] {W' : Projective R} [Algebra R S] [Algebra R F] [Algebra S F] [IsScalarTower R S F] [Algebra R K] [Algebra S K] [IsScalarTower R S K] (f : F →ₐ[S] K) (P : Fin 3F) :
theorem WeierstrassCurve.Projective.baseChange_dblZ {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
theorem WeierstrassCurve.Projective.baseChange_dblX {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
theorem WeierstrassCurve.Projective.baseChange_negDblY {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
theorem WeierstrassCurve.Projective.baseChange_dblY {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
theorem WeierstrassCurve.Projective.baseChange_dblXYZ {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
theorem WeierstrassCurve.Projective.baseChange_addX {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P Q : Fin 3A) :
(baseChange W' B).toProjective.addX (f P) (f Q) = f ((baseChange W' A).toProjective.addX P Q)
theorem WeierstrassCurve.Projective.baseChange_negAddY {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P Q : Fin 3A) :
(baseChange W' B).toProjective.negAddY (f P) (f Q) = f ((baseChange W' A).toProjective.negAddY P Q)
theorem WeierstrassCurve.Projective.baseChange_addY {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P Q : Fin 3A) :
(baseChange W' B).toProjective.addY (f P) (f Q) = f ((baseChange W' A).toProjective.addY P Q)
theorem WeierstrassCurve.Projective.baseChange_addXYZ {R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P Q : Fin 3A) :
(baseChange W' B).toProjective.addXYZ (f P) (f Q) = f (baseChange W' A).toProjective.addXYZ P Q