Documentation

Mathlib.Algebra.Star.Subsemiring

Star subrings #

A *-subring is a subring of a *-ring which is closed under *.

structure StarSubsemiring (R : Type v) [NonAssocSemiring R] [Star R] extends Subsemiring R :

A (unital) star subsemiring is a non-associative ring which is closed under the star operation.

Equations

The actual StarSubsemiring obtained from an element of a StarSubsemiringClass.

Equations
  • StarSubsemiring.ofClass s = { carrier := s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , star_mem' := }
@[simp]
theorem StarSubsemiring.coe_ofClass {S : Type u_1} {R : Type u_2} [NonAssocSemiring R] [SetLike S R] [StarRing R] [SubsemiringClass S R] [StarMemClass S R] (s : S) :
(ofClass s) = s
@[instance 100]
instance StarSubsemiring.instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallStar {R : Type v} [NonAssocSemiring R] [StarRing R] :
CanLift (Set R) (StarSubsemiring R) SetLike.coe fun (s : Set R) => 0 s (∀ {x y : R}, x sy sx + y s) 1 s (∀ {x y : R}, x sy sx * y s) ∀ {x : R}, x sstar x s
Equations
theorem StarSubsemiring.ext {R : Type v} [NonAssocSemiring R] [StarRing R] {S T : StarSubsemiring R} (h : ∀ (x : R), x S x T) :
S = T
theorem StarSubsemiring.ext_iff {R : Type v} [NonAssocSemiring R] [StarRing R] {S T : StarSubsemiring R} :
S = T ∀ (x : R), x S x T
@[simp]
theorem StarSubsemiring.coe_mk {R : Type v} [NonAssocSemiring R] [StarRing R] (S : Subsemiring R) (h : ∀ {a : R}, a S.carrierstar a S.carrier) :
{ toSubsemiring := S, star_mem' := h } = S
def StarSubsemiring.copy {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) (s : Set R) (hs : s = S) :

Copy of a non-unital star subalgebra with a new carrier equal to the old one. Useful to fix definitional equalities.

Equations
  • S.copy s hs = { toSubsemiring := S.copy s hs, star_mem' := }
@[simp]
theorem StarSubsemiring.coe_copy {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) (s : Set R) (hs : s = S) :
(S.copy s hs) = s
theorem StarSubsemiring.copy_eq {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) (s : Set R) (hs : s = S) :
S.copy s hs = S

The center of a semiring R is the set of elements that commute and associate with everything in R

Equations

The center of magma A is the set of elements that commute and associate with everything in A, here realized as a SubStarSemigroup.

Equations