Documentation

Mathlib.Algebra.Lie.Derivation.Basic

Lie derivations #

This file defines Lie derivations and establishes some basic properties.

Main definitions #

Main statements #

Implementation notes #

structure LieDerivation (R : Type u_1) (L : Type u_2) (M : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] extends L →ₗ[R] M :
Type (max u_2 u_3)

A Lie derivation D from the Lie R-algebra L to the L-module M is an R-linear map that satisfies the Leibniz rule D [a, b] = [a, D b] - [b, D a].

instance LieDerivation.instFunLike {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
Equations
instance LieDerivation.instLinearMapClass {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
theorem LieDerivation.toFun_eq_coe {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D : LieDerivation R L M) :
(↑D).toFun = D
def LieDerivation.Simps.apply {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D : LieDerivation R L M) :
LM

See Note [custom simps projection]

Equations
instance LieDerivation.instCoeToLinearMap {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
Coe (LieDerivation R L M) (L →ₗ[R] M)
Equations
@[simp]
theorem LieDerivation.mk_coe {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (f : L →ₗ[R] M) (h₁ : ∀ (a b : L), f a, b = a, f b - b, f a) :
{ toLinearMap := f, leibniz' := h₁ } = f
@[simp]
theorem LieDerivation.coeFn_coe {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (f : LieDerivation R L M) :
f = f
theorem LieDerivation.ext {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {D1 D2 : LieDerivation R L M} (H : ∀ (a : L), D1 a = D2 a) :
D1 = D2
theorem LieDerivation.ext_iff {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {D1 D2 : LieDerivation R L M} :
D1 = D2 ∀ (a : L), D1 a = D2 a
theorem LieDerivation.congr_fun {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {D1 D2 : LieDerivation R L M} (h : D1 = D2) (a : L) :
D1 a = D2 a
@[simp]
theorem LieDerivation.apply_lie_eq_sub {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D : LieDerivation R L M) (a b : L) :
D a, b = a, D b - b, D a
theorem LieDerivation.apply_lie_eq_add {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (D : LieDerivation R L L) (a b : L) :
D a, b = a, D b + D a, b

For a Lie derivation from a Lie algebra to itself, the usual Leibniz rule holds.

theorem LieDerivation.eqOn_lieSpan {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {D1 D2 : LieDerivation R L M} {s : Set L} (h : Set.EqOn (⇑D1) (⇑D2) s) :
Set.EqOn D1 D2 (LieSubalgebra.lieSpan R L s)

Two Lie derivations equal on a set are equal on its Lie span.

theorem LieDerivation.ext_of_lieSpan_eq_top {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {D1 D2 : LieDerivation R L M} (s : Set L) (hs : LieSubalgebra.lieSpan R L s = ) (h : Set.EqOn (⇑D1) (⇑D2) s) :
D1 = D2

If the Lie span of a set is the whole Lie algebra, then two Lie derivations equal on this set are equal on the whole Lie algebra.

theorem LieDerivation.iterate_apply_lie {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (D : LieDerivation R L L) (n : ) (a b : L) :
(⇑D)^[n] a, b = ijFinset.antidiagonal n, n.choose ij.1 (⇑D)^[ij.1] a, (⇑D)^[ij.2] b

The general Leibniz rule for Lie derivatives.

theorem LieDerivation.iterate_apply_lie' {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (D : LieDerivation R L L) (n : ) (a b : L) :
(⇑D)^[n] a, b = iFinset.range (n + 1), n.choose i (⇑D)^[i] a, (⇑D)^[n - i] b

Alternate version of the general Leibniz rule for Lie derivatives.

instance LieDerivation.instZero {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
Equations
@[simp]
theorem LieDerivation.coe_zero {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
0 = 0
@[simp]
theorem LieDerivation.coe_zero_linearMap {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
0 = 0
theorem LieDerivation.zero_apply {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (a : L) :
0 a = 0
instance LieDerivation.instInhabited {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
Equations
instance LieDerivation.instAdd {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
Equations
@[simp]
theorem LieDerivation.coe_add {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D1 D2 : LieDerivation R L M) :
⇑(D1 + D2) = D1 + D2
@[simp]
theorem LieDerivation.coe_add_linearMap {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D1 D2 : LieDerivation R L M) :
↑(D1 + D2) = D1 + D2
theorem LieDerivation.add_apply {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {D1 D2 : LieDerivation R L M} (a : L) :
(D1 + D2) a = D1 a + D2 a
theorem LieDerivation.map_neg {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D : LieDerivation R L M) (a : L) :
D (-a) = -D a
theorem LieDerivation.map_sub {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D : LieDerivation R L M) (a b : L) :
D (a - b) = D a - D b
instance LieDerivation.instNeg {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
Equations
@[simp]
theorem LieDerivation.coe_neg {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D : LieDerivation R L M) :
⇑(-D) = -D
@[simp]
theorem LieDerivation.coe_neg_linearMap {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D : LieDerivation R L M) :
↑(-D) = -D
theorem LieDerivation.neg_apply {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D : LieDerivation R L M) (a : L) :
(-D) a = -D a
instance LieDerivation.instSub {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
Equations
@[simp]
theorem LieDerivation.coe_sub {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D1 D2 : LieDerivation R L M) :
⇑(D1 - D2) = D1 - D2
@[simp]
theorem LieDerivation.coe_sub_linearMap {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D1 D2 : LieDerivation R L M) :
↑(D1 - D2) = D1 - D2
theorem LieDerivation.sub_apply {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (a : L) {D1 D2 : LieDerivation R L M} :
(D1 - D2) a = D1 a - D2 a
class LieDerivation.SMulBracketCommClass (S : Type u_4) (L : Type u_5) (α : Type u_6) [SMul S α] [LieRing L] [AddCommGroup α] [LieRingModule L α] :

A typeclass mixin saying that scalar multiplication and Lie bracket are left commutative.

  • smul_bracket_comm (s : S) (l : L) (a : α) : s l, a = l, s a

    and ⁅⬝, ⬝⁆ are left commutative

Instances
    instance LieDerivation.instSMul {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {S : Type u_4} [Monoid S] [DistribMulAction S M] [SMulCommClass R S M] [SMulBracketCommClass S L M] :
    Equations
    @[simp]
    theorem LieDerivation.coe_smul {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {S : Type u_4} [Monoid S] [DistribMulAction S M] [SMulCommClass R S M] [SMulBracketCommClass S L M] (r : S) (D : LieDerivation R L M) :
    ⇑(r D) = r D
    @[simp]
    theorem LieDerivation.coe_smul_linearMap {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {S : Type u_4} [Monoid S] [DistribMulAction S M] [SMulCommClass R S M] [SMulBracketCommClass S L M] (r : S) (D : LieDerivation R L M) :
    ↑(r D) = r D
    theorem LieDerivation.smul_apply {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (a : L) {S : Type u_4} [Monoid S] [DistribMulAction S M] [SMulCommClass R S M] [SMulBracketCommClass S L M] (r : S) (D : LieDerivation R L M) :
    (r D) a = r D a
    instance LieDerivation.instSMulBase {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
    def LieDerivation.coeFnAddMonoidHom {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
    LieDerivation R L M →+ LM

    coe_fn as an AddMonoidHom.

    Equations
    @[simp]
    theorem LieDerivation.coeFnAddMonoidHom_apply {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (D : LieDerivation R L M) :
    instance LieDerivation.instIsScalarTower {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {S : Type u_4} {T : Type u_5} [Monoid S] [DistribMulAction S M] [SMulCommClass R S M] [SMulBracketCommClass S L M] [Monoid T] [DistribMulAction T M] [SMulCommClass R T M] [SMulBracketCommClass T L M] [SMul S T] [IsScalarTower S T M] :
    instance LieDerivation.instSMulCommClass {R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {S : Type u_4} {T : Type u_5} [Monoid S] [DistribMulAction S M] [SMulCommClass R S M] [SMulBracketCommClass S L M] [Monoid T] [DistribMulAction T M] [SMulCommClass R T M] [SMulBracketCommClass T L M] [SMulCommClass S T M] :
    instance LieDerivation.instBracket {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] :

    The commutator of two Lie derivations on a Lie algebra is a Lie derivation.

    Equations
    @[simp]
    theorem LieDerivation.commutator_coe_linear_map {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] {D1 D2 : LieDerivation R L L} :
    D1, D2 = D1, D2
    theorem LieDerivation.commutator_apply {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] {D1 D2 : LieDerivation R L L} (a : L) :
    D1, D2 a = D1 (D2 a) - D2 (D1 a)
    instance LieDerivation.instLieRing {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] :
    Equations
    instance LieDerivation.instLieAlgebra {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] :

    The set of Lie derivations from a Lie algebra L to itself is a Lie algebra.

    Equations
    @[simp]
    theorem LieDerivation.lie_apply {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (D₁ D₂ : LieDerivation R L L) (x : L) :
    D₁, D₂ x = D₁ (D₂ x) - D₂ (D₁ x)

    The Lie algebra morphism from Lie derivations into linear endormophisms.

    Equations

    The map from Lie derivations to linear endormophisms is injective.

    instance LieDerivation.instNoetherian (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] [IsNoetherian R L] :

    Lie derivations over a Noetherian Lie algebra form a Noetherian module.

    def LieDerivation.inner (R : Type u_1) (L : Type u_2) (M : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :

    The natural map from a Lie module to the derivations taking values in it.

    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem LieDerivation.inner_apply_apply (R : Type u_1) (L : Type u_2) (M : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (m : M) (m✝ : L) :
    ((inner R L M) m) m✝ = m✝, m
    instance LieDerivation.instLieRingModule (R : Type u_1) (L : Type u_2) (M : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
    Equations
    @[simp]
    theorem LieDerivation.lie_lieDerivation_apply (R : Type u_1) (L : Type u_2) (M : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x y : L) (D : LieDerivation R L M) :
    x, D y = y, D x
    @[simp]
    theorem LieDerivation.lie_coe_lieDerivation_apply (R : Type u_1) (L : Type u_2) (M : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x : L) (D : LieDerivation R L M) :
    x, D = x, D
    instance LieDerivation.instLieModule (R : Type u_1) (L : Type u_2) (M : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
    theorem LieDerivation.leibniz_lie (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (x : L) (D₁ D₂ : LieDerivation R L L) :
    x, D₁, D₂ = x, D₁, D₂ + D₁, x, D₂
    noncomputable def LieDerivation.exp {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra L] (D : LieDerivation R L L) (h : IsNilpotent D) :

    In characteristic zero, the exponential of a nilpotent derivation is a Lie algebra automorphism.

    Equations
    theorem LieDerivation.exp_apply {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra L] (D : LieDerivation R L L) (h : IsNilpotent D) :
    theorem LieDerivation.exp_map_apply {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra L] (D : LieDerivation R L L) (h : IsNilpotent D) (l : L) :
    (D.exp h) l = (IsNilpotent.exp D) l