Documentation

Mathlib.Algebra.Group.Subgroup.Even

Squares and even elements #

This file defines the subgroup of squares / even elements in an abelian group.

In a commutative semigroup S, Subsemigroup.square S is the subsemigroup of squares in S.

Equations

In a commutative additive semigroup S, AddSubsemigroup.even S is the subsemigroup of even elements in S.

Equations
@[simp]
theorem Subsemigroup.mem_square {S : Type u_1} [CommSemigroup S] {a : S} :
@[simp]
theorem AddSubsemigroup.mem_even {S : Type u_1} [AddCommSemigroup S] {a : S} :
@[simp]
theorem Subsemigroup.coe_square {S : Type u_1} [CommSemigroup S] :
(square S) = {s : S | IsSquare s}
@[simp]
theorem AddSubsemigroup.coe_even {S : Type u_1} [AddCommSemigroup S] :
(even S) = {s : S | Even s}

In a commutative monoid M, Submonoid.square M is the submonoid of squares in M.

Equations

In a commutative additive monoid M, AddSubmonoid.even M is the submonoid of even elements in M.

Equations
@[simp]
theorem Submonoid.mem_square {M : Type u_1} [CommMonoid M] {a : M} :
@[simp]
theorem AddSubmonoid.mem_even {M : Type u_1} [AddCommMonoid M] {a : M} :
@[simp]
theorem Submonoid.coe_square {M : Type u_1} [CommMonoid M] :
(square M) = {s : M | IsSquare s}
@[simp]
theorem AddSubmonoid.coe_even {M : Type u_1} [AddCommMonoid M] :
(even M) = {s : M | Even s}
def Subgroup.square (G : Type u_1) [CommGroup G] :

In an abelian group G, Subgroup.square G is the subgroup of squares in G.

Equations

In an abelian additive group G, AddSubgroup.even G is the subgroup of even elements in G.

Equations
@[simp]
theorem Subgroup.mem_square {G : Type u_1} [CommGroup G] {a : G} :
@[simp]
theorem AddSubgroup.mem_even {G : Type u_1} [AddCommGroup G] {a : G} :
@[simp]
theorem Subgroup.coe_square {G : Type u_1} [CommGroup G] :
(square G) = {s : G | IsSquare s}
@[simp]
theorem AddSubgroup.coe_even {G : Type u_1} [AddCommGroup G] :
(even G) = {s : G | Even s}