Main Definitions and Results #
Fin.natAdd_castLEEmbas anEmbeddingfromFin ntoFin m,natAdd_castLEEmb m hmn iaddsm - ntoi, generalizesaddNatEmb.cycleIcc i j hijis the cycle(i i+1 .... j)leaving(0 ... i-1)and(j+1 ... n-1)unchanged.range_natAdd_castLEEmbcycleIcc_of_gtcycleIcc_of_lecycleIcc_ofcycleRange_of_ltcycleRange_of_eqsign_cycleIcc
Fin.natAdd_castLEEmb as an Embedding from Fin n to Fin m, natAdd_castLEEmb m hmn i
adds m - n to i, generalizes addNatEmb.
Equations
- natAdd_castLEEmb m hmn = (Fin.addNatEmb (m - n)).trans (finCongr ⋯).toEmbedding
Instances For
@[simp]
@[simp]
cycleIcc i j hij is the cycle (i i+1 .... j) leaving (0 ... i-1) and (j+1 ... n-1)
unchanged.
Equations
- cycleIcc hij = ((j - i).castLT ⋯).cycleRange.extendDomain (natAdd_castLEEmb n ⋯).toEquivRange
Instances For
@[simp]