Main Definitions and Results #
Fin.natAdd_castLEEmb
as anEmbedding
fromFin n
toFin m
,natAdd_castLEEmb m hmn i
addsm - n
toi
, generalizesaddNatEmb
.cycleIcc i j hij
is the cycle(i i+1 .... j)
leaving(0 ... i-1)
and(j+1 ... n-1)
unchanged.range_natAdd_castLEEmb
cycleIcc_of_gt
cycleIcc_of_le
cycleIcc_of
cycleRange_of_lt
cycleRange_of_eq
sign_cycleIcc
Fin.natAdd_castLEEmb
as an Embedding
from Fin n
to Fin m
, natAdd_castLEEmb m hmn i
adds m - n
to i
, generalizes addNatEmb
.
Equations
- natAdd_castLEEmb m hmn = (Fin.addNatEmb (m - n)).trans (finCongr ⋯).toEmbedding
Instances For
@[simp]
@[simp]
cycleIcc i j hij
is the cycle (i i+1 .... j)
leaving (0 ... i-1)
and (j+1 ... n-1)
unchanged.
Equations
- cycleIcc hij = ((j - i).castLT ⋯).cycleRange.extendDomain (natAdd_castLEEmb n ⋯).toEquivRange
Instances For
@[simp]