Documentation

GaloisRamification.Hilbert's_Ramification_Theory

Hilbert's Ramification Theory #

In this file, we discuss the ramification theory in Galois extensions of number fields.

Main definitions and results #

References #

Preliminary #

@[reducible, inline]

The ideal obtained by intersecting 𝓞 K and P.

Equations
Instances For
    instance NumberField.idealUnder.IsPrime (K : Type u_1) [Field K] {L : Type u_2} [Field L] [Algebra K L] (P : Ideal (NumberField.RingOfIntegers L)) [P.IsPrime] :
    Equations
    • =

    We say P lies over p if p is the preimage of P under the algebraMap.

    Instances

      We say P lies over p if p is the preimage of P under the algebraMap.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • =
        Instances
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            instance NumberField.idealUnder.IsMaximal {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (P : Ideal (NumberField.RingOfIntegers L)) [P.IsMaximal] :
            (NumberField.idealUnder K P).IsMaximal

            If P is a maximal ideal of 𝓞 L, then the intersection of P and 𝓞 K is also a maximal ideal.

            Equations
            • =

            In particular, if p is a maximal ideal of ringOfIntegers, then the intersection of p and is also a maximal ideal.

            Equations
            • =
            theorem NumberField.exists_ideal_over_maximal_of_ringOfIntegers {K : Type u_3} [Field K] (p : Ideal (NumberField.RingOfIntegers K)) [p.IsMaximal] (L : Type u_5) [Field L] [NumberField L] [Algebra K L] :
            ∃ (P : Ideal (NumberField.RingOfIntegers L)), P.IsMaximal P lies_over p

            For any maximal idela p in 𝓞 K, there exists a maximal ideal in 𝓞 L lying over p.

            theorem NumberField.ne_bot_ofIsMaximal {K : Type u_3} [Field K] (p : Ideal (NumberField.RingOfIntegers K)) [p.IsMaximal] [NumberField K] :

            Maximal Ideals in the ring of integers are non-zero.

            The image of a maximal ideal under the algebraMap between ring of integers is non-zero.

            @[reducible, inline]
            noncomputable abbrev NumberField.primes_over {K : Type u_5} [Field K] (p : Ideal (NumberField.RingOfIntegers K)) (L : Type u_6) [Field L] [NumberField L] [Algebra K L] :

            The Finset consists of all primes lying over p : Ideal (𝓞 K).

            Equations
            Instances For
              theorem NumberField.primes_over_mem {K : Type u_5} {L : Type u_6} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] :
              instance NumberField.primes_over_instIsMaximal {K : Type u_5} {L : Type u_6} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) [p.IsMaximal] (Q : { x : Ideal (NumberField.RingOfIntegers L) // x NumberField.primes_over p L }) :
              (↑Q).IsMaximal
              Equations
              • =
              instance NumberField.primes_over_inst_lies_over {K : Type u_5} {L : Type u_6} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) [p.IsMaximal] (Q : { x : Ideal (NumberField.RingOfIntegers L) // x NumberField.primes_over p L }) :
              Q lies_over p
              Equations
              • =
              @[reducible, inline]
              abbrev NumberField.primes_over.mk {K : Type u_5} {L : Type u_6} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [P lies_over p] :

              Given a maximal ideal P lies_over p in 𝓞 L, primes_over.mk sends P to an element of the subset primes_over p L of Ideal (𝓞 L).

              Equations
              Instances For
                theorem NumberField.primes_over_card_ne_zero {K : Type u_5} [Field K] [NumberField K] (p : Ideal (NumberField.RingOfIntegers K)) [p.IsMaximal] (L : Type u_7) [Field L] [NumberField L] [Algebra K L] :

                Another form of the property unique_lies_over.

                theorem NumberField.ideal_lies_over.trans {K : Type u_7} {L : Type u_8} [Field K] [Field L] [Algebra K L] {E : Type u_9} [Field E] [Algebra K E] [Algebra E L] [IsScalarTower K E L] (p : Ideal (NumberField.RingOfIntegers K)) (𝔓 : Ideal (NumberField.RingOfIntegers E)) (P : Ideal (NumberField.RingOfIntegers L)) [hp : 𝔓 lies_over p] [hP : P lies_over 𝔓] :
                theorem NumberField.ideal_lies_over_tower_bot {K : Type u_7} {L : Type u_8} [Field K] [Field L] [Algebra K L] {E : Type u_9} [Field E] [Algebra K E] [Algebra E L] [IsScalarTower K E L] (p : Ideal (NumberField.RingOfIntegers K)) (𝔓 : Ideal (NumberField.RingOfIntegers E)) (P : Ideal (NumberField.RingOfIntegers L)) [hp : P lies_over p] [hP : P lies_over 𝔓] :
                𝔓 lies_over p
                theorem NumberField.ideal_unique_lies_over_tower_top {K : Type u_10} {L : Type u_11} [Field K] [Field L] [NumberField L] [Algebra K L] {E : Type u_12} [Field E] [Algebra K E] [Algebra E L] [IsScalarTower K E L] (p : Ideal (NumberField.RingOfIntegers K)) (𝔓 : Ideal (NumberField.RingOfIntegers E)) (P : Ideal (NumberField.RingOfIntegers L)) [𝔓.IsMaximal] [hP : P unique_lies_over p] [𝔓 lies_over p] :
                Equations
                • =

                Galois group Gal(K/L) acts transitively on the set of all maximal ideals #

                instance NumberField.mapRingHom_map.isMaximal {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (P : Ideal (NumberField.RingOfIntegers L)) [hpm : P.IsMaximal] (σ : L ≃ₐ[K] L) :

                The mapRingHom σ will send a maximal ideal to a maximal ideal.

                Equations
                • =
                theorem NumberField.isMaximal_conjugates {K : Type u_3} {L : Type u_4} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [hpm : P.IsMaximal] [hp : P lies_over p] (Q : Ideal (NumberField.RingOfIntegers L)) [hqm : Q.IsMaximal] [hq : Q lies_over p] [IsGalois K L] :

                The Galois group Gal(K/L) acts transitively on the set of all maximal ideals P of 𝓞 L lying above p, i.e., these prime ideals are all conjugates of each other.

                The image of an ideal under the algebraMap between ring of integers remains invariant under the action of mapRingHom σ.

                The map induced by mapRingHom σ on the ideals of 𝓞 L is injective.

                In the case of Galois extension, all the ramificationIdx are the same.

                The algebra equiv ((𝓞 L) ⧸ P) ≃ₐ[(𝓞 K) ⧸ p] ((𝓞 L) ⧸ map (mapRingHom σ) P) induced by an algebra equiv σ : L ≃ₐ[K] L.

                Equations
                Instances For

                  In the case of Galois extension, all the inertiaDeg are the same.

                  @[irreducible]
                  noncomputable def NumberField.ramificationIdx_of_isGalois {K : Type u_3} [Field K] (p : Ideal (NumberField.RingOfIntegers K)) [p.IsMaximal] (L : Type u_5) [Field L] [NumberField L] [Algebra K L] :

                  In the case of Galois extension, it can be seen from the Theorem ramificationIdx_eq_of_IsGalois that all ramificationIdx are the same, which we define as the ramificationIdx_of_isGalois.

                  Equations
                  Instances For
                    @[irreducible]
                    noncomputable def NumberField.inertiaDeg_of_isGalois {K : Type u_3} [Field K] (p : Ideal (NumberField.RingOfIntegers K)) [p.IsMaximal] (L : Type u_5) [Field L] [NumberField L] [Algebra K L] :

                    In the case of Galois extension, it can be seen from the Theorem inertiaDeg_eq_of_IsGalois that all inertiaDeg are the same, which we define as the inertiaDeg_of_isGalois.

                    Equations
                    Instances For

                      In the case of Galois extension, all ramification indices are equal to the ramificationIdx_of_isGalois. This completes the property mentioned in our previous definition.

                      In the case of Galois extension, all inertia degrees are equal to the inertiaDeg_of_isGalois. This completes the property mentioned in our previous definition.

                      The form of the fundamental identity in the case of Galois extension.

                      decomposition Group #

                      The MulAction of the Galois group L ≃ₐ[K] L on the set primes_over p L, given by σ ↦ (P ↦ σ P).

                      Equations
                      def NumberField.decompositionGroup {K : Type u_3} {L : Type u_4} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [hp : P lies_over p] :

                      The decomposition group of P over K, is the stabilizer of primes_over.mk p P under the action Gal_MulAction_primes.

                      Equations
                      Instances For

                        The decompositionGroup is consisting of all elements of the Galois group L ≃ₐ[K] L such that keep P invariant.

                        def NumberField.decompositionField {K : Type u_3} {L : Type u_4} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [hp : P lies_over p] :

                        The decomposition field of P over K is the fixed field of decompositionGroup p P.

                        Equations
                        Instances For
                          instance NumberField.decompositionField_NumberField {K : Type u_3} {L : Type u_4} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [hp : P lies_over p] :

                          decompositionField is a Number Field.

                          Equations
                          • =
                          @[reducible, inline]

                          The ideal equal to the intersection of P and decompositionField p P.

                          Equations
                          Instances For
                            instance NumberField.decompositionIdeal.isMaximal {K : Type u_3} {L : Type u_4} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [hp : P lies_over p] :
                            Equations
                            • =
                            theorem NumberField.isMaximal_lies_over_decompositionideal_unique {K : Type u_3} {L : Type u_4} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [hp : P lies_over p] (Q : Ideal (NumberField.RingOfIntegers L)) [Q.IsMaximal] [Q lies_over NumberField.decompositionIdeal p P] [IsGalois K L] :
                            Q = P

                            P is the unique ideal lying over decompositionIdeal p P.

                            The residue class field corresponding to decompositionField p P is isomorphic to residue class field corresponding to p.

                            inertia Group #

                            The residue class field of a number field is a finite field.

                            Equations
                            • =

                            The extension between residue class fields of number fields is a Galois extension.

                            Equations
                            • =
                            def NumberField.inertiaGroup (K : Type u_5) {L : Type u_6} [Field K] [Field L] [Algebra K L] (P : Ideal (NumberField.RingOfIntegers L)) :

                            The inertia group of P over K is the subgorup of L ≃ₐ[K] L that consists of all the σ : L ≃ₐ[K] L that are identity modulo P.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              If P is the unique ideal lying over p, then P remains invariant under the action of σ.

                              If P is the unique ideal lying over p, then the action of each element σ in L ≃ₐ[K] L on the residue class field is an an automorphism of (𝓞 L) ⧸ P fixing (𝓞 K) ⧸ p, inducing a homomorphism from L ≃ₐ[K] L to the Galois group ((𝓞 L) ⧸ P) ≃ₐ[(𝓞 K) ⧸ p] ((𝓞 L) ⧸ P).

                              Equations
                              Instances For
                                theorem NumberField.inertiaGroup_eq_ker {K : Type u_7} {L : Type u_8} [Field K] [Field L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [hp : P unique_lies_over p] :

                                If P is the unique ideal lying over p, then the inertiaGroup is equal to the kernel of the homomorphism residueGaloisHom.

                                theorem NumberField.inertiaGroup_normal {K : Type u_7} {L : Type u_8} [Field K] [Field L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [hp : P unique_lies_over p] :

                                If P is the unique ideal lying over p, then the inertiaGroup K P is a normal subgroup.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  def NumberField.inertiaFieldAux (K : Type u_7) {L : Type u_8} [Field K] [Field L] [Algebra K L] (P : Ideal (NumberField.RingOfIntegers L)) [P.IsMaximal] :

                                  The intermediate field fixed by inertiaGroup K P.

                                  Equations
                                  Instances For

                                    inertiaFieldAux K P is a Number Field.

                                    Equations
                                    • =
                                    @[reducible, inline]

                                    The ideal equal to the intersection of P and inertiaFieldAux p P.

                                    Equations
                                    Instances For
                                      instance NumberField.inertiaideal_IsMaxiaml {K : Type u_5} {L : Type u_6} [Field K] [Field L] [Algebra K L] (P : Ideal (NumberField.RingOfIntegers L)) [P.IsMaximal] :

                                      inertiaIdealAux p P is a maximal Ideal.

                                      Equations
                                      • =
                                      theorem NumberField.inertiaField_isGalois_of_unique {K : Type u_7} {L : Type u_8} [Field K] [Field L] [Algebra K L] [IsGalois K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [P unique_lies_over p] :

                                      (inertiaFieldAux p P) / K is a Galois extension.

                                      The Galois group Gal((inertiaFieldAux p P) / K) is isomorphic to the Galois group Gal((𝓞 L) ⧸ P) / (𝓞 K) ⧸ p).

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        The extension degree [L : K] is equal to the product of the ramification index and the inertia degree of p in L.

                                        The extension degree [inertiaFieldAux p P : K] is equal to the inertia degree of p in L.

                                        The extension degree [L : inertiaFieldAux p P] is equal to the ramification index of p in L.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          def NumberField.inertiaField {K : Type u_5} {L : Type u_6} [Field K] [NumberField K] [Field L] [NumberField L] [Algebra K L] (p : Ideal (NumberField.RingOfIntegers K)) (P : Ideal (NumberField.RingOfIntegers L)) [p.IsMaximal] [P.IsMaximal] [P lies_over p] :

                                          The intertia field of P over K is the intermediate field of L / decompositionField p P fixed by the inertia group pf P over K.

                                          Equations
                                          Instances For
                                            @[reducible, inline]

                                            The ideal equal to the intersection of P and inertiaField p P.

                                            Equations
                                            Instances For

                                              (inertiaField p P) / (decompositionField p P) is a Galois extension.

                                              Equations
                                              • =

                                              The Galois group Gal(L / (inertiaField p P)) is isomorphic to inertiaGroup K P.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                The extension degree [inertiaField p P : K] is equal to the inertia degree of p in L.

                                                The extension degree [L : inertiaField p P] is equal to the ramification index of p in L.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For